FINAL EXAM

ALGEBRAIC STRUCTURES (2022/23)

19/06/2023

The maximum number of points you can score in this Evaluation is 10 . You get 1 point for free.
Instructions: Read the questions carefully and take your time to access which part of the theory you need for each exercise. All your answers should be accompanied by a justification.

Good luck!

Exercise 1. [2 points]

a) [1 point] Give a prime factorization of $\beta=310+310 i$ in $\mathbb{Z}[i]$.
b) [1 point] Is the polynomial $x^{310}-(310+310 i)$ irreducible over $\mathbb{Q}[i]$?

Don't forget to justify your answers.
Exercise 2. [2.5 points] Let $\omega=\sqrt{3}+\sqrt{5}$.
a) [1 point] Determine the minimal polynomial of ω over \mathbb{Q}.
b) $[0.5$ point $]$ Determine $[\mathbb{Q}(\omega): \mathbb{Q}]$.
c) [1 point] Is $\mathbb{Q}(\omega)$ a splitting field for the polynomial determined in a)?

Don't forget to justify your answers.
Exercise 3. [2.3 points]
a) [1 point] Determine all monic irreducible polynomials $\int \in \mathbb{F}_{3}[X]$. for which $\mathbb{F}_{3}[X] /(f) \simeq \mathbb{F}_{9}$.
b) $[0.7$ point $]$ Let f be one of the polynomials determined in a). Show that f does not divide $X^{27}-X$.
c) $[0.6$ point $]$ Show that there is no field with 27 elements that contains \mathbb{F}_{9}.

Don't forget to justify your answers.
Exercise 4. [2.2 points] Let $i \in \mathbb{C}$ be such that $i^{2}=-1$ and $\mathbb{Z}[i \sqrt{5}]=\{a+b i \sqrt{5} ; a, b \in \mathbb{Z}\}$. Consider the evaluation homomorphism $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[i \sqrt{5}]$ given by $f(X)=i \sqrt{5}$ and $f(a)=a, \forall a \in \mathbb{Z}$.
a) [0.7 point] Show that f is surjective and determine its kernel.
b) [1.5 point] Show that the ideal $(2,1+i \sqrt{5})$ is a maximal ideal in $\mathbb{Z}[i \sqrt{5}]$ (Hint: You can use the homomorphism \int to show that $\left(\mathbb{Z}[i \sqrt{5}] /(2,1+i \sqrt{5}) \cong \mathbb{F}_{2}\right.$.)
Don't forget to justify your answers.

