FINAL EXAM

ALGEBRAIC STRUCTURES (2022/23)

19/06/2023

The maximum number of points you can score in this Evaluation is 10. You get 1 point for free.

Instructions: Read the questions carefully and take your time to access which part of the theory you need for each exercise. **All your answers should be accompanied by a justification.**

Good luck!

Exercise 1. [2 points]

a) [1 point] Give a prime factorization of $\beta = 310 + 310i$ in $\mathbb{Z}[i]$.

b) [1 point] Is the polynomial $x^{310} - (310 + 310i)$ irreducible over $\mathbb{Q}[i]$?

Don't forget to justify your answers.

Exercise 2. [2.5 points] Let $\omega = \sqrt{3} + \sqrt{5}$.

a) [1 point] Determine the minimal polynomial of ω over \mathbb{Q} .

b) [0.5 point] *Determine* $[\mathbb{Q}(\omega) : \mathbb{Q}]$.

c) [1 point] Is $\mathbb{Q}(\omega)$ a splitting field for the polynomial determined in a)?

Don't forget to justify your answers.

Exercise 3. [2.3 points]

a) [1 point] Determine all monic irreducible polynomials $f \in \mathbb{F}_3[X]$ for which $\mathbb{F}_3[X]/(f) \simeq \mathbb{F}_9$.

- b) [0.7 point] Let f be one of the polynomials determined in a). Show that f does not divide $X^{27} X$.
- c) [0.6 point] Show that there is no field with 27 elements that contains \mathbb{F}_9 .

Don't forget to justify your answers.

Exercise 4. [2.2 points] Let $i \in \mathbb{C}$ be such that $i^2 = -1$ and $\mathbb{Z}[i\sqrt{5}] = \{a + bi\sqrt{5}; a, b \in \mathbb{Z}\}$. Consider the evaluation homomorphism $f : \mathbb{Z}[X] \to \mathbb{Z}[i\sqrt{5}]$ given by $f(X) = i\sqrt{5}$ and $f(a) = a, \forall a \in \mathbb{Z}$.

- a) [0.7 point] Show that f is surjective and determine its kernel.
- b) [1.5 point] Show that the ideal $(2, 1 + i\sqrt{5})$ is a maximal ideal in $\mathbb{Z}[i\sqrt{5}]$ (Hint: You can use the homomorphism f to show that $(\mathbb{Z}[i\sqrt{5}]/(2, 1 + i\sqrt{5}) \cong \mathbb{F}_{2.})$

Don't forget to justify your answers.